整除的性質(zhì):
1.如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。
2.如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。
3.如果a能被b整除,b又能被c整除,那么a也能被c整除。
4.如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。
18、余數(shù)及其應(yīng)用
基本概念:
對任意自然數(shù)a、b、q、r,如果使得a÷b=q……r,且0<r<b,那么r叫做a除以b的余數(shù),q叫做a除以b的不完全商。
余數(shù)的性質(zhì):
?、儆鄶?shù)小于除數(shù)。
?、谌鬭、b除以c的余數(shù)相同,則c|a-b或c|b-a。
?、踑與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。
④a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。
19、余數(shù)、同余與周期
同余的定義:
?、偃魞蓚€(gè)整數(shù)a、b除以m的余數(shù)相同,則稱a、b對于模m同余。
②已知三個(gè)整數(shù)a、b、m,如果m|a-b,就稱a、b對于模m同余,記作a≡b(mod m),讀作a同余于b模m。
同余的性質(zhì):
?、僮陨硇裕篴≡a(mod m);
?、趯ΨQ性:若a≡b(mod m),則b≡a(mod m);
?、蹅鬟f性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);
?、芎筒钚裕喝鬭≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);
?、蕹朔叫裕喝鬭≡b(mod m),則an≡bn(mod m);
?、咄缎?若a≡ b(mod m),整數(shù)c,則a×c≡ b×c(mod m×c);
關(guān)于乘方的預(yù)備知識:
①若A=a×b,則MA=Ma×b=(Ma)b
?、谌鬊=c+d則MB=Mc+d=Mc×Md
被3、9、11除后的余數(shù)特征:
①一個(gè)自然數(shù)M,n表示M的各個(gè)數(shù)位上數(shù)字的和,則M≡n(mod 9)或(mod 3);
②一個(gè)自然數(shù)M,X表示M的各個(gè)奇數(shù)位上數(shù)字的和,Y表示M的各個(gè)偶數(shù)數(shù)位上數(shù)字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);
費(fèi)爾馬小定理:
如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(mod p)。
20、分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用