【口訣】:
每牛每天的吃草量假設(shè)是份數(shù)1,
A頭B天的吃草量算出是幾?
M頭N天的吃草量又是幾?
大的減去小的,除以二者對(duì)應(yīng)的天數(shù)的差值,
結(jié)果就是草的生長速率。
原有的草量依此反推。
公式就是A頭B天的吃草量減去B天乘以草的生長速率。
將未知吃草量的牛分為兩個(gè)部分:
一小部分先吃新草,個(gè)數(shù)就是草的比率;
有的草量除以剩余的牛數(shù)就將需要的天數(shù)求知。
牛吃草問題的例題解析
例:整個(gè)牧場(chǎng)上草長得一樣密,一樣快。27頭牛6天可以把草吃完;23頭牛9天也可以把草吃完。問21頭多少天把草吃完。
每牛每天的吃草量假設(shè)是1,則27頭牛6天的吃草量是27X6=162,23頭牛9天的吃草量是23X9=207;
大的減去小的,207-162=45;二者對(duì)應(yīng)的天數(shù)的差值,是9-6=3(天)
結(jié)果就是草的生長速率。所以草的生長速率是45/3=15(牛/天);
原有的草量依此反推。
公式就是A頭B天的吃草量減去B天乘以草的生長速率。
所以原有的草量=27X6-6X15=72(牛/天)。
將未知吃草量的牛分為兩個(gè)部分:
一小部分先吃新草,個(gè)數(shù)就是草的比率;
這就是說將要求的21頭牛分為兩部分,一部分15頭牛吃新生的草;
剩下的21-15=6去吃原有的草,
所以所求的天數(shù)為:原有的草量/分配剩下的牛=72/6=12(天)
例1.由于天氣逐漸變冷,牧場(chǎng)上的草每天以固定的速度在減少,經(jīng)計(jì)算,牧場(chǎng)上的草可供20頭牛吃5天,或可供16頭牛吃6天。那么,可供11頭牛吃幾天?
解答:設(shè)一頭牛一天吃的草量為一份。牧場(chǎng)每天減少的草量:(20×5-16×6)÷(6-5)=4份,原來的草量:(20+4)×5=120份,可供11頭牛吃120÷(11+4)=8天。
總結(jié):想辦法從變化中找到不變的量。牧場(chǎng)上原有的草是不變的,新長出的草雖然在變化,但是因?yàn)槭莿蛩偕L,所以每天新長出的草量也是不變的。正確計(jì)算草地上原有的草及每天新長出的草,問題就會(huì)迎刃而解。
知識(shí)衍變
牛吃草基本問題就先介紹到這,希望大家掌握這種方法,以后出現(xiàn)樣吃草問題,驢吃草問題也知道怎么做,甚至,以下這些問題都可以應(yīng)用牛吃草問題解決方法。
例2.自動(dòng)扶梯以均勻速度由下往上行駛,小明和小麗從扶梯上樓,已知小明每分鐘走25級(jí)臺(tái)階,小麗每分鐘走20級(jí)臺(tái)階,結(jié)果小明用了5分鐘,小麗用了6分鐘分別到達(dá)樓上。該扶梯共有多少級(jí)臺(tái)階?
【分析】在這道題中,"總的草量"變成了"扶梯的臺(tái)階總級(jí)數(shù)","草"變成了"臺(tái)階","牛"變成了"速度",所以也可以看成是"牛吃草"問題來解答。
例3.兩只蝸牛同時(shí)從一口井的井頂爬向井底。白天往下爬,兩只蝸牛的爬行速度是不同的,一只每天爬行20分米,另一只每天爬行15分米。黑夜往下滑,兩只蝸?;械乃俣葏s是相同的,結(jié)果一只蝸牛恰好用了5個(gè)晝夜到達(dá)井底,另一只恰好用了6個(gè)晝夜到達(dá)井底。那么,井深多少米?
大家說這里什么是牛?什么是草?都什么是不變的?
解答:蝸牛每夜下降:(20×5-15×6)÷(6-5)=10分米,所以井深:(20+10)×5=150分米=15米
例4.一個(gè)水池,池底有泉水不斷涌出,用10部抽水機(jī)20小時(shí)可以把水抽干,用15部相同的抽水機(jī)10小時(shí)可把水抽干。那么用25部這樣的抽水機(jī)多少小時(shí)可以把水抽干?
解答:設(shè)一臺(tái)抽水機(jī)一小時(shí)抽水一份。則每小時(shí)涌出的水量是:(20×10-15×10)÷(20-10)=5份,池內(nèi)原有的水是:(10-5)×20=100份.所以,用25部抽水機(jī)需要:100÷(25-5)=5小時(shí)
思維拓展
例5.一個(gè)牧場(chǎng)上的青草每天都勻速生長。這片青草可供27頭牛吃6天,或供23頭牛吃9天,現(xiàn)有一群牛吃了4天后賣掉2頭,余下的牛又吃了4天將草吃完。這群牛原來有多少頭?
解答:設(shè)每頭牛每天的吃草量為1份。每天新生的草量為:(23×9-27×6)÷(20-10)=15份,原有的草量為(27-15)×6=72份。如兩頭牛不賣掉,這群牛在4+4=8天內(nèi)吃草量72+15×8+2×4=200份。所以這群牛原來有200÷8=25頭。